The Time Dimension in Aladin

Example: The Binary Star ** WNO 7 How to visualize star proper motion
with Aladin

Françoise Genova/Caroline Bot
Updated June 2012

Start Aladin, either with the standalone software installed on your machine from http://aladin.u-strasbg.fr/java/nph-aladin.pl? frame=downloading or from the on-line link http://aladin.u-strasbg.fr/ java/nph-aladin.pl

- Click on File, then Open, which will open the Aladin image server
- Type « ** WNO 7 » in the Target box
- Click on SUBMIT

- You now have a list of all the images available in the Aladin image server around ** WNO 7
- Choose three images by checking the boxes:
- POSSIO-DSS2
- POSSIIJ-DSS2
- POSSII N-DSS2

- You get the image display with the three images in the data stack on the right. You can visualize each of them by ticking the small box on the left of the image name in the stack
- Create a colour composition from the three images by clicking on the rgb button in the "Functions" column

- You see that the position of the binary is different from one plate to the other (green, blue and red colors): the two stars move together with a large proper motion

- For each image the corresponding epoch appears in the Properties window

POSSI O: 1951.835
POSSII N: 1995.649
POSSII J: 1987.748

- To measure the angular distance between two positions, use the dist button and drag a double arrow between the two points with the left button of your mouse.
- The distance is printed near the arrow with more details at the bottom of the screen if you click on one of the arrowheads

Estimation of
** WNO 7 proper motion:
38.1"/
(1995.649-1951.835) $=$ 0.9 "/year

You can delete the arrow by clicking on "Drawing" in the data stack and press on the del button

Pixel profile along the arrow for the three colours: the arrows are centered on the red and blue objects

To go further... you can compare this value to estimations from the literature stored in the SIMBAD database

- Click on SIMBAD
- Click on the square on one of the stars
- The line below the image contains information about the object, including the proper motion (PMRA and PMDEC). Moving the mouse above the colums gives you the detailed label and unit (mas/year)

Proper motion in SIMBAD:
 0.9"
 which is compatible with our estimation

Hint: The red lines on the image represent the star proper motion - which is large indeed

There are only 1328 objects in SIMBAD (in June 2012) with a proper motion larger than 0.8 " you can try to find the number yourself using the Criteria query in SIMBAD

